AI Everything – Applying AI

These days it seems like businesses are trying to use AI to do everything. At least for startups, that isn’t far off. Anywhere there is a dataset remotely large enough and an answer that is vaguely definable, companies are putting together a business model to use machine learning to solve the problem. With some incredible successes in areas like image classification and defeating humans at video games, its hard not to be impressed.

One of the best channels for following recent breakthroughs in AI is the 2 Minute Papers YouTube Channel, started by Károly Zsolnai-Fehér, a professor at the Vienna University of Technology in Austria. Károly’s videos combine interesting clips of the programs in action with well-delivered summaries of recent papers illustrating advances in artificial intelligence.

In one of his latest videos, he covers an AI that not only can copy the most successful actions that humans take in video games but can actually improve on those actions to be better than the best human players. So does that mean that AI will be displacing office workers once it learns how to do their jobs better than them? Probably, yes. But maybe not quite how you think it might.

As much of a ‘black-box‘ as AI has been in the past, modern systems are becoming better and better at explaining how they arrived at an answer. This gives human operators predictive capabilities that we didn’t have with systems of the past that could spit out an answer but gave us no indication of how that answer was formulated.

This Forbes article on Human-Centric AI provides some examples of how modern AI systems can be implemented to train employees to do their jobs better and even enjoy their jobs more while doing it! If that doesn’t sound incredible to you, you may be a machine who is only reading this page to improve your search algorithm.

So what does this all mean? A lot of research is showing that AI is actually creating many more jobs than it destroys. So, as long as you’re willing to try and understand the systems that will one day be our overlords, you should be able to upgrade your career and stay employed.

Whether you still want the job that remains is another question entirely.

Applying AI – Page 2 – Where and how to put AI to use – Applications in Finance, Engineering, Business and more!

These days it seems like businesses are trying to use AI to do everything. At least for startups, that isn’t far off. Anywhere there is a dataset remotely large enough and an answer that is vaguely definable, companies are putting together a business model to use machine learning to solve the problem. With some incredible successes in areas like image classification and defeating humans at video games, its hard not to be impressed.

One of the best channels for following recent breakthroughs in AI is the 2 Minute Papers YouTube Channel, started by Károly Zsolnai-Fehér, a professor at the Vienna University of Technology in Austria. Károly’s videos combine interesting clips of the programs in action with well-delivered summaries of recent papers illustrating advances in artificial intelligence.

In one of his latest videos, he covers an AI that not only can copy the most successful actions that humans take in video games but can actually improve on those actions to be better than the best human players. So does that mean that AI will be displacing office workers once it learns how to do their jobs better than them? Probably, yes. But maybe not quite how you think it might.

As much of a ‘black-box‘ as AI has been in the past, modern systems are becoming better and better at explaining how they arrived at an answer. This gives human operators predictive capabilities that we didn’t have with systems of the past that could spit out an answer but gave us no indication of how that answer was formulated.

This Forbes article on Human-Centric AI provides some examples of how modern AI systems can be implemented to train employees to do their jobs better and even enjoy their jobs more while doing it! If that doesn’t sound incredible to you, you may be a machine who is only reading this page to improve your search algorithm.

So what does this all mean? A lot of research is showing that AI is actually creating many more jobs than it destroys. So, as long as you’re willing to try and understand the systems that will one day be our overlords, you should be able to upgrade your career and stay employed.

Whether you still want the job that remains is another question entirely.

January 2019 – Applying AI: Transforming Finance, Investing, and Entrepreneurship

These days it seems like businesses are trying to use AI to do everything. At least for startups, that isn’t far off. Anywhere there is a dataset remotely large enough and an answer that is vaguely definable, companies are putting together a business model to use machine learning to solve the problem. With some incredible successes in areas like image classification and defeating humans at video games, its hard not to be impressed.

One of the best channels for following recent breakthroughs in AI is the 2 Minute Papers YouTube Channel, started by Károly Zsolnai-Fehér, a professor at the Vienna University of Technology in Austria. Károly’s videos combine interesting clips of the programs in action with well-delivered summaries of recent papers illustrating advances in artificial intelligence.

In one of his latest videos, he covers an AI that not only can copy the most successful actions that humans take in video games but can actually improve on those actions to be better than the best human players. So does that mean that AI will be displacing office workers once it learns how to do their jobs better than them? Probably, yes. But maybe not quite how you think it might.

As much of a ‘black-box‘ as AI has been in the past, modern systems are becoming better and better at explaining how they arrived at an answer. This gives human operators predictive capabilities that we didn’t have with systems of the past that could spit out an answer but gave us no indication of how that answer was formulated.

This Forbes article on Human-Centric AI provides some examples of how modern AI systems can be implemented to train employees to do their jobs better and even enjoy their jobs more while doing it! If that doesn’t sound incredible to you, you may be a machine who is only reading this page to improve your search algorithm.

So what does this all mean? A lot of research is showing that AI is actually creating many more jobs than it destroys. So, as long as you’re willing to try and understand the systems that will one day be our overlords, you should be able to upgrade your career and stay employed.

Whether you still want the job that remains is another question entirely.

Style Transfer – Applying AI

Transfer learning. It’s a branch of AI that allows for the style transfer from one image to another. It seems like a straightforward concept: take my selfie and make it look like a Michelangelo painting. However, it is a fairly recent innovation in Deep Neural Networks that has allowed us to separate the content of an image from its style. And in doing so, to combine multiple images in ways that were previously impossible. For example, taking a long-dead artist’s style and applying it to your weekend selfie.

Just to prove that this is pretty cool, I’m going to take my newly built style transfer algorithm and apply it to a ‘selfie’ of my good dog, Lawrence. Here’s the original:

And here’s the image that I’m going to apply the style of:

That’s right, it’s Davinci’s Mona Lisa, one of the most iconic paintings of all time. I’m going to use machine learning to apply Davinci’s characteristic style to my iPhone X photo of my, admittedly very handsome, pupper.

If you’re interested, here’s a link to the original paper describing how to use Convolutional Neural Networks or CNNs to accomplish image style transfer. It’s written in relatively understandable language for such a technical paper so I do recommend you check it out, given you’re already reading a fairly technical blog.

So what is image content and style and how can we separate out the two? Well, neural networks are built in many layers, and the way it works out, some of the layers end up being responsible for detecting shapes and lines, as well as the arrangement of objects. These layers are responsible for understanding the ‘content’ of an image. Other layers, further down in the network are responsible for the style, colors and textures

Here’s the final result next to the original.

Pretty striking, if I do say so myself.

Using a pre-trained Neural Network called VGG19 and a few lines of my own code to pull the figures and what’s called a Gram Matrix I choose my style weights (how much I want each layer to apply). Then using a simple loss function to push us in the right direction we apply the usual gradient descent algorithm and poof. Lawrence is forever immortalized as a Davinci masterpiece.

Impressed? Not Impressed? Let me know in the comments below. If you have anything to add, or you think I could do better please chime in! This is a learning process for me and I’m just excited to share my newfound knowledge.

Here’s a link to my code in a Google Colab Notebook if you want to try it out for yourself!